Stability estimates for the Jacobi inverse eigenvalue problem

نویسندگان

  • L. Borcea
  • V. Druskin
  • L. Knizhnerman
چکیده

We present different stability estimates for the Jacobi inverse eigenvalue problem. First, we give upper bounds expressed in terms of quadrature data and not having weights in denominators. The technique of orthonormal polynomials and integral representation of Hankel determinants is used. Our bounds exhibit only polynomial growth in the problem’s dimension (see [4]). It has been shown that the approach, exploiting integral representation of Hankel determinants, implies at least quantitative improvement of earlier results and generalizes them (see [5]). It has also been demonstrated that a particular implementation of the Hankel determinant approach gives an estimate being unimprovable up to a coefficient; the corresponding example involves quadrature data with a small but not too small weight. It follows that polynomial increase of a general case upper bound in terms of the dimension is unavoidable (see [5]). Second, we derive a differential formula for perturbations which allows us to effectively handle the special case of a spectral measure with approximately equal weights (see [2]). This special case is closely related to the inverse discrete SturmLiouville problem (see [1]), considered in combination with the ”optimal finite difference grids” technique [3].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Jacobi-Davidson Method for Nonlinear Eigenproblems

For the nonlinear eigenvalue problem T (λ)x = 0 we consider a Jacobi–Davidson type iterative projection method. The resulting projected nonlinear eigenvalue problems are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.

متن کامل

A geometric theory for preconditioned inverse iteration. III: A short and sharp convergence estimate for generalized eigenvalue problems

In two previous papers by Neymeyr: A geometric theory for preconditioned inverse iteration I: Extrema of the Rayleigh quotient, LAA 322: (1-3), 61-85, 2001, and A geometric theory for preconditioned inverse iteration II: Convergence estimates, LAA 322: (1-3), 87-104, 2001, a sharp, but cumbersome, convergence rate estimate was proved for a simple preconditioned eigensolver, which computes the s...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Inverse Eigenvalue Problem for a Class of Spring-Mass Systems

This paper discusses the constructional problem for a class of spring-mass systems whose part particles are connected to the ground. The problem is converted to an inverse eigenvalue problem for Jacobi matrix. An inverse eigenvalue problem of determining the system from its some physical parameters and incomplete eigenpairs is solved. The necessary and sufficient condition for constructing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007